Contrôle Partiel de mécanique des solides

11 Mars 2015- Durée 1h

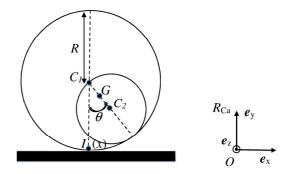
Aucun document autorisé - L'usage des calculatrices et des téléphones portables est interdit.

Problème: Equilibre d'un disque inhomogène sur un plan

L'objectif de ce problème est d'établir les éléments cinétiques et cinématiques d'un solide composite. Les parties I et II sont indépendantes

On considère un solide composite S contenu dans le plan (Oxy) d'un référentiel $R_{Ca}(Oxyz)$ constitué de l'assemblage de deux disques (cf. figure) :

- un disque S_0 de rayon R, de masse surfacique σ_1 et de centre C_1 , évidé par un trou circulaire de rayon R / 2 et de centre C_2 tel que $C_1C_2 = R / 2$. On notera S_1 le solide ainsi évidé.
- d'un disque S_2 de rayon R/2, de masse surfacique $\sigma_2 = 5 \sigma_1$ et de centre C_2 .



Partie I : Cinématique du solide

Le solide S, posé sur le plan horizontal, se déplace le long de l'axe (Ox). Son centre C_1 est animé d'un mouvement de translation à la vitesse $\mathbf{v}_{C1} = v_0 \mathbf{e}_x$ et on note $\mathbf{\Omega} = \mathbf{\Omega} \mathbf{e}_z$ le vecteur-vitesse de rotation de S par rapport à R_{Ca} .

- 1) Etablir l'expression de la vitesse, par rapport à R_{Ca} , du point de contact I appartenant au solide S, en contact avec le sol repéré par l'axe (Ox).
- 2) En déduire la vitesse de glissement du solide S par rapport au sol et la condition de roulement sans glissement permettant de relier v_0 à Ω .

Partie II - Détermination des éléments cinétiques du solide composite : masse M, centre de masse G et moment d'inertie J_{Gz}

- I- Déterminer la masse totale M du solide composite et montrer que $M = 2\pi\sigma_1 R^2$.
- II- 1) Déterminer la position du centre d'inertie C'_1 du solide évidé S_1 en fonction de C_1C_2 . En déduire que $C'_1C_1 = R/6$
 - 2) Déterminer la position du centre d'inertie G du solide composite $S = S_1 + S_2$. Montrer que $C_1G = R / 4$.
- III- 1) Etablir les expressions, en fonction de R et de σ_1 :
 - du moment d'inertie du disque S_0 non évidé par rapport à son axe de révolution C_{1z} ,

- du moment d'inertie du solide S_0 non évidé par rapport à l'axe G_Z , en utilisant le résultat précédent et le théorème d'Huygens,
- du moment d'inertie du disque de centre C_2 , de rayon R/2, de masse surfacique σ_1 par rapport à son axe de révolution C_{2z} ,
- du moment d'inertie de ce petit disque par rapport à l'axe G_Z , en utilisant le résultat précédent et le théorème d'Huygens,
- du moment d'inertie du solide **évidé** S_1 par rapport à l'axe G_Z à partir des résultats précédents.
- 2) Etablir l'expression, en fonction de R et de σ_2 , puis en fonction de R et de σ_1 , du moment d'inertie du solide S_2 par rapport à l'axe G_Z .
- 3) Montrer alors que le moment d'inertie J_{Gz} par rapport à l'axe (Gz) du disque inhomogène $S = S_1 + S_2$ est : $J_G = 3MR^2 / 8$.
- 4) Etablir l'expression de l'énergie cinétique du solide composite (S) en fonction des données du problème.